Model of thermal infrared image texture generation based on the scenery space frequency
نویسندگان
چکیده
Infrared texture is an important feature in identifying scenery. To simulate infrared image texture effectively at different distances, we propose a model of infrared image texture generation based on scenery space frequency and the image pyramid degradation principle. First, we build a spatial frequency filter model based on imaging distance, taking into account the detector’s maximum spatial frequency, and use the filter to process a “zero” distance infrared image texture. Second, taking into consideration the actual temperature difference of the scenery’s details due to variation of the imaging distance and the effect of atmospheric transmission, we compare the actual temperature difference with the minimum resolvable temperature difference of the thermal imaging system at a specific frequency and produce a new image texture. The results show that the simulated multiresolution infrared image textures produced by the proposed model are very similar (lowest mean square error 1⁄4 0.51 and highest peak signal-to-noise ratio 1⁄4 117.59) to the images captured by the thermal imager. Therefore, the proposed model can effectively simulate infrared image textures at different distances. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.54.4.043102]
منابع مشابه
A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملAutomatic generation of façade textures from terrestrial thermal infrared image sequences
This paper discusses the automatic texturing of building facades from thermal infrared image sequences. A fully automatic method is presented to refine GPS based positions using a relative orientation of the image sequence and preknowledge of a given building model in a bundle adjustment process. The resulting refined orientation parameters are used to project the infrared images of the sequenc...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کامل